

Thermochimica Acta 303 (1997) 187-190

thermochimica acta

A thermochemical study of Cs₂MCl₄ complexes

Feng Ying*, Li Liangchao, Qu Songsheng

Department of chemistry, Wuhan University, Hubei, 430072, P.R. China

Received 17 October 1996; received in revised form 4 June 1997; accepted 7 July 1997

Abstract

The standard molar formation enthalpies of Cs_2MCl_4 (M is Zn(II) and Cu(II)) are determined from the enthalpies of dissolution ($\Delta_s H_m^{\ominus}$) of [2CsCl(s) + MCl_2(s)] and Cs_2MCl_4(s) in 0.03 mol l⁻¹ H₂SO₄ solvent, respectively, at 298.2 K, as:

 $\Delta_{\rm f} H^{\ominus}_{\rm m}({\rm Cs}_2{\rm ZnCl}_4, \ {\rm s}, \ {\rm 298.2\,K}) = -1340.46\,{\rm kJ\,mol}^{-1}$

 $\Delta_{\rm f} H_{\rm m}^{\ominus}({\rm Cs}_2{\rm CuCl}_4, \ {\rm s}, \ 298.2 \,{\rm K}) = -1129.04 \,{\rm kJ \, mol}^{-1}.$

© 1997 Elsevier Science B.V.

Keywords: Cs₂CuCl₄; Cs₂ZnCl₄; Standard molar formation enthalpy; Thermochemistry

1. Introduction

A series of tetrahedral tetrahalogen metallic salts, R_2MX_4 (where *R* is a univalent cation; M(II) is Fe, Co, Ni, Zn, Cu; X is Cl, Br, I), have been prepared and characterized [1,2]. The crystal structures and the magnetic and spectral properties have been previously reported [3–8], but a few thermochemical data have been published. We have determined the standard molar formation enthalpies of Cs₂ZnCl₄ and Cs₂CuCl₄ by solution calorimetry.

Firstly, the dissolution enthalpies $(\Delta_s H_m^{\ominus})$ of $[2CsCl(s) + MCl_2(s)]$ and $[Cs_2MCl_4(s)]$ in 0.03 mol l⁻¹ H₂SO₄ solvent were determined at 298.2 K. Hence, from these values, combined auxiliary values, the standard molar formation enthalpies of Cs₂ZnCl₄(s) and Cs₂CuCl₄(s) have been derived:

$$\begin{split} &\Delta_{\rm f} H^{\ominus}_{\rm m}({\rm Cs_2ZnCl_4, \ s, \ 298.2\ K}) = -1340.46\ \rm kJ\ mol^{-1}; \\ &\Delta_{\rm f} H^{\ominus}_{\rm m}({\rm Cs_2CuCl_4, \ s, \ 298.2\ K}) = -1129.04\ \rm kJ\ mol^{-1}. \end{split}$$

2. Experimental

2.1. Chemicals

All the chemicals (CsCl, KCl, ZnCl₂, CuCl₂ \cdot 2H₂O, H₂SO₄) used were of analytical grade and obtained from the Shanghai Reagent Factory.

CsCl with a purity higher than 99.5% was dried in a vacuum oven at 220° C to constant mass, prior to use.

KCl (obtained from Shanghai reagent factory), calorimetric primary standard of purity greater than 99.99%, was dried in a vacuum oven for 6 h at 135° C, prior to use.

^{*}Corresponding author.

^{0040-6031/97/\$17.00 (© 1997} Elsevier Science B.V. All rights reserved *P11* \$0040-6031(97)00246-3

System	No.	m^{a} (g)	$\Delta E_{ m s}^{ m b}$ (mV)	ΔE_{e}^{c} (mV)	t_e^{d} (s)	Q ^e (J)	$\Delta_{\rm s} H_{\rm m}^{\ominus}$ f (kJ mol ⁻¹)
$2CsCl(s) + ZnCl_2(s)$	-	0.4558	0.9364	-1.4168	269.0	-29.73	-30.841
	2	0.4666	0.9498	-1.4042	270.1	-30.44	-30.855
	3	0.4624	0.9442	-1.4096	270.2	-30.15	-30.845
	4	0.4659	0.9516	-1.4064	269.8	-30.39	-30.858
	5	0.4650	0.9493	-1.4077	269.9	-30.32	-30.845
	$\Delta_{ m s} H^{\ominus}_{ m m}$ [2C:	$H_{\rm m}^{\ominus} \left[2 \operatorname{CsCl}(\mathrm{s}) + \operatorname{ZnCl}_2(\mathrm{s}) \right] = -$	-30.849 ± 0.017 kJ mol ⁻¹	ol ⁻¹			
Cs ₂ ZnCl ₄ (s)	1	0.4558	-0.2606	-1.2386	240.1	8.43	8.747
	2	0.4666	-0.2497	-1.1567	239.8	8.62	8.743
	3	0.4624	-0.2692	-1.2569	239.6	8.55	8.746
	4	0.4659	-0.2562	-1.1880	239.7	8.61	8.744
	5	0.4650	-0.2532	-1.1778	240.4	8.60	8.751
	$\Delta_{ m s} H_{ m m}^{\ominus} ~[{ m Cs}_2$	$\Delta_{\rm s} H_{\rm m}^{\ominus} \left[{\rm Cs_2 Zn Cl_4(s)} ight] = 8.746 \pm 0.003 {\rm kJ \ mol^{-1}}$).003 kJ mol ⁻¹				
$[2CsCl(s)+CuCl_2\cdot 2H_2O(s)]$	1	0.5124	0.3039	0.7933	268.9	17.162	16.987
	7	0.5132	0.2795	0.7290	269.5	17.214	17.013
	£	0.5132	0.2655	0.6990	269.9	17.079	16.879
	4	0.5098	0.2515	0.6620	268.9	17.020	16.933
	5	0.5080	0.2393	0.6350	270.1	16.951	16.924
	$\Delta_{ m s} H_{ m m}^{\ominus}$ [2Cs	$H_{\mathrm{m}}^{\ominus} \left[2\mathrm{CsCl(s)} + \mathrm{CuCl}_2 \cdot 2\mathrm{H}_2\mathrm{O(s)} \right]$	(s) = 16.947 ± 0.053 kJ mol ⁻¹	t kJ mol ⁻¹			
Cs ₂ CuCl ₄ (s)	-	0.4760	0.1632	0.7039	267.4	10.329	10.224
	7	0.4767	0.1689	0.7300	269.7	10.396	10.275
	ŝ	0.4802	0.1702	0.7280	269.8	10.509	10.311
	4	0.4736	0.1488	0.6562	272.5	10.295	10.242
	5	0.4719	0.1565	0.6800	269.0	10.314	10.298
	$\wedge H_{\Theta} $ [Ce	$\Lambda \ H^{\oplus} \ [C_{e}, C_{n}C] \ [eM] = 10.270 \pm 0.037 \ bI \ m_{eM}^{-1}$	$0.037 \mathrm{km}^{-1}$				

⁴ Mass of sample. ^b The voltage change during the sample dissolution. ^c The voltage change during the electrical calibration. ^d Heating period of electrical calibration. ^e Heat effect. ^f $(= \Delta E_s / \Delta E_e) I^2 Rt_e(M/m)$ where R is the electro-resistance; I the current; and M the molar mass.

Table 1

Table 2

Reaction scheme for the standard molar formation enthalpy of Cs₂ZnCl₄(s) at the temperature 298.2 K. The solvent 's' was 0.03 mol l⁻¹ H₂SO₄(aq). $\Delta H_5 = \Delta H_1 - \Delta H_2 + 2\Delta H_3 + \Delta H_4$

Reaction	$\Delta_{\rm s} H^{\ominus}_{\rm m}$ (kJ mol ⁻¹)
$1. \{2CsCl(s) + ZnCl_2(s)\} + s' = \{2CsCl + ZnCl_2\} (sln in 's')$	-30.849±0.017
2. $Cs_2ZnCl_4(s) + s' = Cs_2ZnCl_4$ (sin in 's')	$8.746 {\pm} 0.003$
3. $Cs(s) + 1/2Cl_2(g) = CsCl(s)$	-443.04
4. $\operatorname{Zn}(s) + \operatorname{Cl}_2(g) = \operatorname{ZnCl}_2(s)$	415.05
5. $2Cs(s) + Zn(s) + 2Cl_2(g) = Cs_2ZnCl_4(s)$	-1340.46

Table 3

Reaction scheme for the standard molar formation enthalpy of Cs₂CuCl₄ at the temperature 298.2 K. The solvent 's' was 0.03 mol l^{-1} H₂SO₄ (aq). $\Delta H_6 = \Delta H_1 - \Delta H_2 + 2\Delta H_3 + \Delta H_4 - 2\Delta H_5$

Reaction	$\Delta_{\mathrm{s}} H^{\ominus}_{\mathrm{m}}$ (kJ mol ⁻¹)
$\frac{1}{1. \{2CsCl(s) + CuCl_2 \cdot 2H_2O(s)\} + s' = \{2CsCl + CuCl_2 \cdot 2H_2O\} (sln in 's')}$	16.947±0.053
2. $Cs_2CuCl_4(s) + s' = Cs_2CuCl_4$ (sln in 's')	10.270 ± 0.0037
3. $Cs(s) + 1/2Cl_2(g) = CsCl(s)$	443.04
4. $Cu(s) + Cl_2(g) + 2H_2(g) + O_2(g) = CuCl_2 \cdot 2H_2O(s)$	-821.32
5. $H_2(g) + 1/2O_2(g) = H_2O(I)$	-285.84
6. $2\mathbf{Cs}(\mathbf{s}) + \mathbf{Zn}(\mathbf{s}) + 2\mathbf{Cl}_2(\mathbf{g}) = \mathbf{Cs}_2\mathbf{ZnCl}_4(\mathbf{s})$	-1129.04

2.2. Calorimeter

The isoperibol reaction calorimeter used for this study was constructed in this laboratory and was adapted for measuring enthalpies of solid–liquid, liquid–liquid reactions [9]. The volume of the reaction vessel is 100 cm^3 . The precision temperature control and measurement are ± 0.001 and ± 0.0001 K, respectively.

The calorimeter was tested by measuring the dissolution enthalpy of THAM (NBS 742a, U.S.A.) in 0.1 mol 1⁻¹ HCl and the KCl (calorimetric primary standard) in water at 298.2 K. The mean dissolution enthalpies are $-29776 \pm 16 \text{ J mol}^{-1}$ for THAM and $17597 \pm 17 \text{ J mol}^{-1}$ for KCl, which are in conformity with the respective published data [10,11].

2.3. Preparations

 $Cs_2ZnCl_4(s)$ was prepared by evaporating a mixture of solutions of CsCl and ZnCl₂ (mole ratio is 2 : 1) according to the method of Behler [12].

 $Cs_2CuCl_4(s)$ was prepared by evaporating an aqueous solution of cesium chloride and copper chloride (mole ratio is 2:1) at ambient temperature and was subsequently purified by means of repeated

recrystallization according to Helmholz and Kruh [13].

The structures of the $Cs_2ZnCl_4(s)$ and $Cs_2CuCl_4(s)$ were characterized by state methods [12,13].

3. Results and discussion

All were dissolved in 100 ml of 0.03 mol l^{-1} H₂SO₄ solution.

Sample of mass 0.45 g of CsCl(s) and ZnCl₂(s) in a mole ratio 2 : 1 were dissolved in 100 ml 0.03 mol 1^{-1} H₂SO₄ solution at 298.2 K. The results are shown in Table 1.

The dissolution enthalpies of $Cs_2ZnCl_4(s)$, $[2CsCl(s) + CuCl_2 \cdot 2H_2O(s)]$ and $Cs_2CuCl_4(s)$ in 0.03 mol l^{-1} H₂SO₄ were measured under the same conditions. The results are also tabulated in Table 1.

3.1. Cs_2ZnCl_4

The reaction scheme to derive the standard molar formation enthalpy of $Cs_2ZnCl_4(s)$ is given in Table 2. The molar dissolution enthalpy of CsCl(s) and $ZnCl_2(s)$ mixture at mole ratio of $n(CsCl)/n(ZnCl_2) = 2 : 1$ was measured in

0.03 mol 1⁻¹ H₂SO₄(aq). In the same solvent, we have measured the molar dissolution enthalpy of Cs₂ZnCl₄(s). The standard molar formation enthalpies of CsCl(s) and ZnCl₂(s) were taken from Ref. [14]. After combining all the reactions, we obtained: $\Delta_f H_m^{\odot}$ (Cs₂ZnCl₄, s, 298.2 K)= -1340.46 kJ mol⁻¹.

3.2. Cs_2CuCl_4

The standard molar formation enthalpy of $Cs_2CuCl_4(s)$ has been derived from the reaction scheme as given in Table 3. The molar dissolution enthalpies of CsCl(s) and $CuCl_2 \cdot 2H_2O(s)$ mixture at mole ratio of $n(CsCl)/n(CuCl_2 \cdot 2H_2O) = 2 : 1$ was measured in 0.03 mol 1^{-1} H₂SO₄(aq). In the same solvent, we have measured the molar dissolution enthalpy of $Cs_2CuCl_4(s)$. The dilution effect of 0.03 mol 1^{-1} H₂SO₄ diluted in 2 mol H₂O is ignored. These values were combined with auxiliary quantities of $\Delta_f H_m^{\ominus} = -443.04$ kJ mol⁻¹ for CsCl(s) [14], -821.32 kJ mol⁻¹ for $CuCl_2 \cdot 2H_2O(s)$ [14] and -285.84 kJ mol⁻¹ for H₂O [14] to derive the standard molar formation enthalpy: $\Delta_f H_m^{\ominus}$ [Cs₂CuCl₄, s, 298.2 K] = -1129.04 kJ mol⁻¹

References

- [1] N.S. Gill and R.S. Nyholm, J. Chem. Soc. 3997 (1959).
- [2] F.A. Cotton, J. Am. Chem. Soc., 83 (1961) 4161.
- [3] Puget Rene, Jnnin Michel, Perret Rene, Ferroelectrics, 107 (1990) 229.
- [4] N. Trendafilova, G. St. Nikolov, R. Kellner, G. Bauer, Vib. Spectrosc., 6 (1994) 351.
- [5] V. Gomathy, U.S. Ghosh, C. Basu, Pramana, 45 (1995) 33.
- [6] K.L. Bray, H.G. Drickamer, J. Phys. Chem., 94 (1990) 2154.
- [7] R.K. Subramanian, K. Venu, V.S.S. Sastry, J. Phys. Condens. Matter, 6 (1994) 137.
- [8] A. Pfitzner, J.K. Crockcroft, I. Solinas, H.D. Lutz, A. Anorg. Allg. Chem., 619 (1993) 993.
- [9] C. X Wang, Z.H. Song, W.G. Xiong, S.S. Qu, Acta Physico-Chimica Sinica, 7 (1991) 586.
- [10] P. Pychly, V. Pekarek, J. Chem. Thermodynamics, 9 (1977) 39.
- [11] R.L. Mnotgomery et al., J. Chem. Thermodynamics, 9 (1977) 915.
- [12] V.B. Behler, Z. Krist., 109 (1957) 68.
- [13] L. Helmholz, R.F. Kruh, J. Am. Chem. Soc., 74 (1977) 1176.
- [14] R.C. Weast, CRC Handbook of Chemistry and Physics, 70th edn., CRC Press, Inc. Florida, 1990.